Introduction

• Fire & Explosion scenarios
• Risk score on grids obtained using structural damage Probit function
• Case Study: Locate 7 facilities around Hexane distillation unit
• Goal: Minimization of costs associated with layout

Methodology

Risk Score = Incident frequency x Plant Lifetime x % of structural damage (k) x Weighting factor
Objective function, constraints for optimization

\[
\text{Min} \quad \sum_{i=1}^{n} \sum_{k=1}^{K} [RS_k \times FC^i + RD_k \times UP^i] \times B_{ik}
\]

\(RS_k\) = Risk score of \(k\) grid caused from the center facility (process unit)

\(RD_k\) = Rectilinear distance of \(k\) grid calculated from the center facility (process unit)

\(FC^i\) = Facility building cost of \(i\)-th facility

\(UP^i\) = Unit piping cost between \(i\)-th facility and the center facility (process unit)

s.t.

\[
\sum_{k=1}^{K} B_{ik} = 1, \forall i \in \text{Facilities}, \forall k \in \text{all grids on the plane}
\]

\[
\sum_{i=1}^{n} B_{ik} \leq 1
\]

\(B_{ik} = \begin{cases}
1 & \text{if unit } i \text{ is allocated to site area} \\
0 & \text{otherwise}
\end{cases}
\]

\[
|x_i - x_j| + |y_i - y_j| \geq D_{ij}
\]

\(i \in \text{occupied buildings}, j \in \text{hazardous facilities such as storage tanks}\)

\(x_i, y_i\) = \(x, y\) coordinate of \(i\)-th facility

\(D_{ij}\) is the minimum separation distance between \(i\) and \(j\)

\[
|x_i - x_j| + |y_i - y_j| \leq m_{ij}
\]

\(m_{ij}\) is the limited distance among similar facilities

\(i, j \in \text{occupied buildings or } i, j \in \text{storage tanks}\)
Results and conclusion

<table>
<thead>
<tr>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>G02</td>
<td>G03</td>
<td>G04</td>
<td>G05</td>
<td>G06</td>
<td>G07</td>
<td>G08</td>
<td>G09</td>
<td>Utility</td>
<td></td>
</tr>
<tr>
<td>G31</td>
<td>G32</td>
<td>G33</td>
<td>G34</td>
<td>G35</td>
<td>Small storage Tank1</td>
<td>G37</td>
<td>G38</td>
<td>G39</td>
<td>G40</td>
<td></td>
</tr>
<tr>
<td>G41</td>
<td>G42</td>
<td>G43</td>
<td>Large storage tank</td>
<td>Process Unit</td>
<td>Small storage tank2</td>
<td>G48</td>
<td>G49</td>
<td>G50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G51</td>
<td>G52</td>
<td>G53</td>
<td>G54</td>
<td>G55</td>
<td>G56</td>
<td>G57</td>
<td>G58</td>
<td>G59</td>
<td>G60</td>
<td></td>
</tr>
<tr>
<td>G61</td>
<td>G62</td>
<td>G63</td>
<td>G64</td>
<td>G65</td>
<td>G66</td>
<td>G67</td>
<td>G68</td>
<td>G69</td>
<td>G70</td>
<td></td>
</tr>
<tr>
<td>G71</td>
<td>G72</td>
<td>G73</td>
<td>G74</td>
<td>G75</td>
<td>G76</td>
<td>G77</td>
<td>G78</td>
<td>G79</td>
<td>G80</td>
<td></td>
</tr>
<tr>
<td>G81</td>
<td>G82</td>
<td>G83</td>
<td>G84</td>
<td>G85</td>
<td>G86</td>
<td>G87</td>
<td>G88</td>
<td>G89</td>
<td>Control Room</td>
<td></td>
</tr>
<tr>
<td>G91</td>
<td>G92</td>
<td>G93</td>
<td>G94</td>
<td>G95</td>
<td>G96</td>
<td>G97</td>
<td>G98</td>
<td>Office Ware House</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Case study for hexane-heptane separation plant was demonstrated to obtain the optimal layout of 7 facilities around the hazardous process unit.
- Adaptable for numerous facilities with swift calculation using MILP.