Mary Kay O'Connor Process Safety Center

Texas A&M Engineering Experiment Station

  • About
    • About the Center
    • History
    • Mission, Vision and Values
    • Consortium Membership
    • What Is Process Safety Engineering?
    • News
  • Education
    • Safety Engineering Certificate
    • Master Program
    • PhD Program
    • Process Safety Practice Certificate
    • Course Descriptions
    • Course Registration
  • Symposia
  • Research
    • Current Research Areas
    • Student Research Highlights
    • Published Articles by Dr. Faisal Khan
  • People
    • Personnel Directory
    • Alumni
    • Faculty Associates
    • Faculty Fellows and Former Visiting Scholars
    • Steering Committee
    • Technical Advisory Committee
  • Resources
    • Scholarships
    • Facilities and Equipment
    • Center Publications
  • Contact Us
    • Join our LISTSERV
    • Contact Info

Resilient Engineered Systems

List of Center Publications

About

With the increase in complexity of chemical plants and increase in the difficulty of predicting potential failures, the desire to design systems resilient to potential faults has increased. It is critical to understand the resilience of engineered systems, especially those that support the critical infrastructure of the nation, across all engineering and design disciplines (Mitchell and Mannan, 2005). While research has been performed to increase the resiliency of specific systems, the concept of resiliency as a property of a system has yet to be explored.

This research focuses on understanding the underlying relationship of modes and causes of failures and developing techniques that apply to many types of systems, structures, and products. We propose to equate the resiliency of a system to a well-established concept, the resiliency of a materialAlso, systems may fail due to lack of resilience of one component of the system. The unified approach to physics developed by Schmid and Fuchs will be used to establish a simplified overall energy balance for system in terms of characteristic “substance-like” quantities. The final agreed upon correlations will be applied to various equipment, units, and processes to aid in the development of tools and heuristics that can be used to improve the resiliency of chemical processes.

List of Center Publications

  1. Jain, P., Pasman, H. J., Waldram, S., Pistikopoulos, E. N., & Mannan, M. S. (2018). Process Resilience Analysis Framework (PRAF): A systems approach for improved risk and safety management. Journal of Loss Prevention in the Process Industries, 53, 61-73. https://doi.org/10.1016/j.jlp.2017.08.006
  2. Jain, P., Rogers, W. J., Pasman, H. J., Keim, K. K., & Mannan, M. S. (2018). A resilience-based integrated process systems hazard analysis (RIPSHA) approach: Part I plant system layer. Process Safety and Environmental Protection, 116, 92-105. https://doi.org/10.1016/j.psep.2018.01.016
  3. Jain, P., Rogers, W. J., Pasman, H. J., & Mannan, M. S. (2018). A resilience-based integrated process systems hazard analysis (RIPSHA) approach: Part II management system layer. Process Safety and Environmental Protection, 118, 115-124. https://doi.org/10.1016/j.psep.2018.06.037
  4. Dinh, L.T.T., H.J. Pasman, X. Gao, and M.S. Mannan, “Resilience Engineering of Industrial Processes: Principles and Contributing Factors,” Journal of Loss Prevention in the Process Industries, vol. 25, no. 2, March 2012, pp. 233-424.
  5. Mitchell, S.M. and M.S. Mannan, “Designing Resilient Engineered Systems,” Chemical Engineering Progress, vol. 102, no. 4, April 2006, pp. 39-45.
Mary Kay O’Connor Process Safety Center
Room 200, Jack E. Brown Building
Texas A&M University, 3122 TAMU
College Station, TX 77843-3122
E-mail: [email protected]
MKOPSC Facebook MKOPSC Twitter MKOPSC Linkedin
Texas A&M Engineering Experiment Station

Copyright © 2025 · Texas A&M Engineering Experiment Station · All Rights Reserved