Flame Retardants
- Ahmed, L., Zhang, B., Shen, R., Agnew, R. J., Park, H., Cheng, Z., … & Wang, Q. (2018). Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. Journal of Thermal Analysis and Calorimetry, 132(3), 1853-1865. https://doi.org/10.1007/s10973-018-7127-9
- 2. Ahmed, L., Zhang, B., Hatanaka, L. C., & Mannan, M. S. (2018). Application of polymer nanocomposites in the flame retardancy study. Journal of Loss Prevention in the Process Industries, 55, 381-391. https://doi.org/10.1016/j.jlp.2018.07.005
- 3. Shen, R., Hatanaka, L. C., Ahmed, L., Agnew, R. J., Mannan, M. S., & Wang, Q. (2017). Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. Journal of Thermal Analysis and Calorimetry, 128(3), 1443-1451. https://doi.org/10.1007/s10973-016-6070-x
- 4. Shen, R., Park, H., Liu, Q., & Wang, Q. (2019). A new method to calculate adiabatic surface temperature using plate thermometer in an ambient condition. Applied Thermal Engineering, 149, 306-311. https://doi.org/10.1016/j.applthermaleng.2018.12.021
High Expansion Foam
- 1. Krishnan, Pratik, et al. “Improving the stability of high expansion foam used for LNG vapor risk mitigation using exfoliated zirconium phosphate nanoplates.” Process Safety and Environmental Protection 123 (2019): 48-58. https://www.sciencedirect.com/science/article/abs/pii/S0957582018310280
- 2. Krishnan, Pratik, et al. “Effects of forced convection and thermal radiation on high expansion foam used for LNG vapor risk mitigation.” Journal of Loss Prevention in the Process Industries 55 (2018): 423-436. https://www.sciencedirect.com/science/article/abs/pii/S0950423018304170
- 3. Harding, Brian Z., et al. “Efficacy of decontamination foam on a non-polar hazardous chemical surrogate.” Journal of Loss Prevention in the Process Industries 43 (2016): 457-463. https://www.sciencedirect.com/science/article/abs/pii/S0950423016301796
- 4. Zhang, Bin, et al. “Liquefied natural gas vapor hazard mitigation with expansion foam using a research-scale foam generator.” Industrial & Engineering Chemistry Research 55.20 (2016): 6018-6024. https://pubs.acs.org/doi/abs/10.1021/acs.iecr.5b04535
- 5. Harding, Brian, et al. “Improved research-scale foam generator design and performance characterization.” Journal of Loss Prevention in the Process Industries 39 (2016): 173-180. https://www.sciencedirect.com/science/article/abs/pii/S095042301530067X
- 6. Guevara, Juan S., et al. “Stabilization of Pickering foams by high-aspect-ratio nano-sheets.” Soft Matter 9.4 (2013): 1327-1336. https://pubs.rsc.org/lv/content/articlelanding/2013/sm/c2sm27061g/unauth#!divAbstract
- 7. Yun, Geunwoong, Dedy Ng, and M. Sam Mannan. “Key findings of liquefied natural gas pool fire outdoor tests with expansion foam application.” Industrial & engineering chemistry research 50.4 (2011): 2359-2372. https://pubs.acs.org/doi/abs/10.1021/ie101365a